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NONLINEAR STABILITY
OF MULTISTEP MULTIDERIVATIVE METHODS

SHOUFU LI AND BAOGEN RUAN

ABSTRACT. In this paper we examine nonlinear stability of multistep multi-
derivative methods for initial value problems of a class K, in a Banach space.
Stability criteria are established which extend results of R. Vanselow to this
class of methods.

1. INTRODUCTION

Since 1975, theories of nonlinear stability of numerical methods for ordi-
nary differential equations have been gradually developed. However, in most
papers the studies are restricted within the limits of finite-dimensional Euclidean
spaces (cf. [1-5]). In 1979, Nevanlinna and Liniger [11] were among the first
to discuss the stability of one-leg methods for nonlinear problems in a Banach
space. In 1983, Vanselow [12] analyzed the stability of linear multistep meth-
ods for nonlinear problems of the classes K1, K24*, and K3u in Banach
spaces. Recently, Li [8] introduced the classes of nonlinear problems K(u, A*)
and K(u, A", ) which unify and extend the classes of problems and the re-
sults in [12]. In a further development along similar lines, Li [9] investigated
the nonlinear stability of explicit and diagonally implicit Runge-Kutta methods.
Furthermore, Li [10] made a modification to the class K(u, 0, 0) to deal with
the nonlinear stability of multistep methods with first-order total derivative of
the right side of the differential equation. In the present paper these studies are
extended to multistep methods with higher derivatives, and the results of [10]
and some of [12] will be recovered as special cases.

2. CLASS OF MODEL PROBLEMS

Let X denote a real Banach space with the norm |- ||, D an infinite subset
of X,and f: [0, +o0)xD — X a given sufficiently smooth mapping. Consider
the initial value problem (or IVP for short)

(2.1) Yty =ft,y@), >0,
(2.2) y(0) =y, Yo€D.
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Throughout this paper, the assumption is made that the IVP (2.1)-(2.2) can be
solved uniquely.

For any u,v € D, t > 0, using the mapping f, we define a nonnegative
function

p
1 -1
(23)  H,,, & Z e w - 70, )]
where & = (§,,&,,..., &) €R?, p isa positive integer, and the functions [ @)

are defined recursively by
£, w) = £t w),
oS, w)  2f (e, w)

(g+1) _
£ wy = H— 5y (s w).
In the special case where X is a (complex or real) Hilbert space with the
inner product (-, -) and the corresponding norm | -|j, (2.3) is equivalent to

14
H,, . /&)= {uu ~|® +Z¢§nf<q-”<z, ) — £, o))

zp: )¢, Re(u -, 7w, wy - 970, v))

=l
+2 > | ’“5&5

1<i<j<p

(2.4)

1/2
Re(f Ve, uy - Ve, 0), U0, w) - 970, v»} :

For convenience, the Hu v.t,

f(é) will be denoted by H(&).
Definition 1. Let ¢: R‘; — R, denote a nonnegative function with the property:
(2.5) y9&) =008 VyeR,, E=(§,¢,,...,¢)€ER].
Here, R, = {x € R|x > 0}. The class of all IVP’s (2.1)-(2.2) with f satisfying
M1 +9@IHO)<HE) V¢eR), u,veD, t>0;
(IN forany &= (£,,&,, ..., ), E= (. §, ..., &) eR’,
if || <&, withg=1,2,...,p,
then H(¢) < H(E) Yu,veD, t>0
is denoted by K ;” ) , or, if no confusion can arise, simply by K i

Proposition 1. If the IVP (2.1)-(2.2) belongs to the class K, then for any & =
&5¢,..-,¢,) ER’, and 6 €[0, 1] there holds

1+dp(&)
H(60) < 1+ ¢(&)

(2.6)

HE), u,veD, t>0.
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Proof. From Definition 1 we find

H(E) = ||(1 - 8)(u—v)
{ v+f:1VéU“‘tu ﬂ“%nmq
q=1
< (1= 8)H(O0) +6HE) < ——0 _H@E +smE) = 11220 ey g

- 1+ T+9©) 1+ 0()

Proposition 2. If X is a (complex or real) Hilbert space, then condition (2.6)
implies that
M (=) "Re(w—v, f97¢, u) - £V, v)
2.7) <-ple)llu-v|*, g=1,2,....p, u,veD, t>0;
an (- Re( V@ w) - 7w ), 700 w) - U0, v)
<0, 1<i,j<p, u,veD, t>0;

here, e, = 0,...,0,1,0,...,0), with the qth component equal to 1 and the
others zero. In addition, if the further assumption is made that the function ¢
satisfies

p
(2.8) Z pile,) VE=(¢.8,....¢)€ER,

(e.g, 9 =0) then condmon (2.6) is equivalent to (2.7).

Proof.. First suppose condition (2.6) is satisfied; we prove (2.7). Put x > 0 and
choose ¢ = xe, in (2.6)(I), so that

[ote) +30% )] lu—vl* < SIA 7", w) - £, o))
+ (=1 Re(u—v, 7V, u) - £, v)).
Letting x — +0 we get (2.7)(I). Further, it follows from (2.6)(II) that
H(xei—ej)SH(xei+ej.), i,j=1,2,...,p
Hence we have
—Re(t(u—v)+ ('@, w0 - rTV, o),
V'Y w - 70 o < 0.

Letting x — +oo yields (2.7)(II).
We now prove (2.6) on the assumption that (2.7) and (2.8) are satisfied. Note
that (2.7)(I) leads to

elu—vl> <17, w) - 7, 0’ g=1,2,...,p,



584 SHOUFU LI AND BAOGEN RUAN

and therefore we find

p 14
(Z¢§¢2<eq>) [ [ S VA ") A () [
g=1 q=1

Vé=(61962’-'-’fp)eRi, u,’UGD, tZO

A combination of (2.4), (2.7), (2.8), and (2.9) yields (2.6)(I) and (2.6)(II), and
this completes the proof. O

(2.9)

Proposition 3. Suppose the IVP (2.1)-(2.2) belongs to the class K iy Then for

any two solutions y(t) and z(t) of the differential equation (2.1) the following
is true:

(2.10)  |Iv(5y) = z(g)ll < exp((t) — )@ Nly(t) =z, 1,2t 203

a1y W@ -Gl <) - 2w,
122t120, q=1,2,---,17—1, 1722
Proof. We only need to note that the functions
G(1) = exp(tp(e)|ly(1) — z(0)||
and
G,0="m-2"01, a=1,2,...,p-1,

are continuous for all ¢ > 0 and have the left-hand derivatives D_G(¢) and
D_ Gq(t) for all ¢ > 0; it is then easily seen from (2.6)(I), (II) that D_G(¢) <0
and D_G,(1)<0. O

Proposition 4. Suppose y: [0, +00) — c isa given sufficiently smooth map-
ping, and A an N x N matrix satisfying

(2.12) u(—(-AH <0, g=1,2,...,p,

where u(-) is the logarithmic matrix norm corresponding to an inner-product
norm on CV (cf. [6]). Then the linear system

{y'(t)=Ay(t)+W(t), t>0,
y(0)=y0, yOGCNa
belongs to the class K p with

(2.13)

P

(2.14) 9&) ==Y Eu(-(=A)"), &=, &, ..., &) ER].
g=1

Proof. Tt is well known that

=4~ < (1 —p@)™

if w(4) <1
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and
p p
T EA | <D ¢ mA,) ifE >0, 9g=1,2,...,p,
g=1 g=1

where Aq, q=1,2,...,p,are NxN matrices and I is the N x N identity
matrix. Hence, under the assumption (2.12) we have (2.6)(I) and one easily
shows (2.6)(II) from (2.4). O

3. MAIN RESULTS AND THEIR PROOFS
Consider the multistep multiderivative method for the IVP (2.1)-(2.2)

k )4
(3.1) o [ym +3 =00 ST s Y | =0,
i=0 g=1

where k, p are positive integers, 4 > 0 is a stepsize independentof n, y, ., €
D are approximations to y(Z,,;), t,,; = (n+ i)h, the coefficients o, ﬂiq are
real-valued functions of % (cf. [8] and Examples 4.1 and 4.2 in the present

paper), and it is assumed that o, >0 and Z’i‘:o a, =0 forall 2>0.
For the method (3.1) and any given 42 > 0 we define

(32) I,={0,1,....k—1}, I, ={i€lo,#0}, I, ={i€la,>0}.

Note that because of o, >0 and Z?:o a; =0, the set I| is nonempty.
Let {y,} and {z,} (,,z, € D) be two approximation sequences which
satisfy (3.1) with different initial conditions. We now introduce some notation:

Hn(f)=Hyn’Zn,t,.>f(é)’ W, =Vy = 2y
-1 -1 -

EV =00,y - 7,0 2), a=1,2,,p,
A=A) =Y lal/lo] =1+2 /oy,

i€l iel,

BY = (hB, KBy, ... . H'B,),  i=0,1,.. k.
By (3.1) we have at once

p
-1
Wyt Z(‘l)qhqﬂqursik )

(3.3) - ,
==Y (ay/ay) [wm + Z(—l)qh"ﬂinn‘i?”} :
i€l q=1

Theorem 1. Suppose the IVP (2.1)-(2.2) belongs to the class K 0 and the set

N¢= {h>0|rl!éali(|ﬂ'q|sﬂkq, q= la 29 --*p;

3.4)
(1 - Arg)p(B) > 4 - 1}
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is nonempty. Then for all h € N, p and r € [ry, 1] the generalized contractivity
inequalities

[1+rg(BL)lIw, ]l <

)4
q q 1)
wn+k+ Z h ﬂkq n+

(3.5) )
1
< Gy max |w,,, + Py (=1)7h g, FOTY ' :
g=1
n=0,1,2,..., are satisfied. Here,
_All+ rofp(ﬂ"”) <
h=
L+ o(BM)
(3.6) ro=max{r,,r,,..., rp} ,
r = | e, Bigll Big Jor Byg >0, g=1,2,...,p.
1 0 for B, =0, -

Proof. For he N ) it is easy to see that there exists r meeting the requirements
of this theorem and certainly 0 < C, < 1. With Definition 1 and Proposmon
1 it is obvious that

1+ rcv(ﬂff’))

3.7 [+ rpBw, il < Hyyy (7B < LZH, (B
(By)
Note that (3.3) yields
h (h
(38) Hn+k ) < E 'a |/ak) n+1 ﬂ ))‘
i€l

On the assumption that |ﬂiq| < ’oﬂkq ,i1€l,,q=1,2,...,p, we obtain

(h)
3.9 H_ (8™ < L rop(Be)
(3.9) n+1(ﬂz ) < n+1( Oﬂ ) < 1+ r(o(ﬂ,((h))

A combination of (3.7), (3.8), and (3.9) leads to
[+ r@ (B MW, il < Hy (7B

1+r () 1+ r,p( (h) h
< 0B LA P) S (o, 0y, (B
L+o(B,7) 1+r (P(ﬂ )iel
cAll+ ro9 (B, &) (h)
o) e B
which completes the proof. O

(h)

H, (rB.").

Corollary 1. Suppose the IVP (2.1)-(2.2) belongs to the class K p and the set

. N = < = : .
310§, ={h>0lmaxif,I<p,. a=1.2.....pi mixa, <0
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is nonempty. Then for all h € 1% and r € [ry, 1] the inequalities (3.5) are
satisfied with
L+ rgp(B")

Pl
L+o(B")

Proof. The proof is quite easy; we only need to note that in this case we have
N¢CN¢ and A=1. O

(3.11) C, =

Corollary 2. If in the method (3.1) all coefficients o, ﬂiq are independent of h
and satisfy
(3.12) {aiSO forz:el ,

|ﬂiq| Sﬂkq foriel, g=1,2,...,p,
then

(I) for any IVP (2.1)-(2.2) of the class K¢ and h > 0 the inequalities (3.5)
are satisfied with C, given by (3.11), whenever r € [r,, 1];

(IT) the method is A(m/(2p))-stable.

Proof. Result (I) is derived from Corollary 1; for the proof of result (II), note
first that, as an obvious consequence of Proposition 4, for 6 € [t —n/(2p), n+
7/(2p)] the linear model problem

{y':ly, A=|Alexp(if) e C, i=+v-1,
y(0)=y,, y,€C,
belongs to the class Kq, with

(3.13)

<

0(&) == 3 (=1)%¢, Re(A%);

g=1
then apply result (I). O

Remark 1. Inequalities (3.5) imply

q (g—1)
rlrg}z{ nk+z+r2 h ﬂqunk+z
(3.14)
<C, 5 max || w +rZ hqﬂqu(q 1)“, n=0,1,2,...,
i€l
g=1
and
y (a-1)
Wy, il € ——2——max |lw, +r Vg, FV,
(3.15) “ nk+j|| 1+r¢(ﬂ]((h)) iGIO Z kq
n=0,1,2,..., j=0,1,..., k—1.

Inequalities (3.14) and (3.15) characterize the stability of the method (3.1).
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Remark 2. For the method (3.1) with p = 1, 2, the results in the present paper
coincide with those in the papers [8] and [10], respectively.

4. EXAMPLES

Example 4.1. For problems with oscillatory solutions a class of methods based
on trigonometric polynomials was developed by Gautschi [7]. One such method
is the implicit one-step method

(@1 Yy =2y = @R/ Gy V) + S 2],

where & > 0 is a stepsize independent of n and w > 0 is the known circular
frequency of the true solution. The method (4.1) is of trigonometric order 1
and of algebraic order 2. In comparison with (3.1) we get that k = p =1,
ag=-1, a =1, B, = —(wh)” ' tan(wh/2), and B, | = (wh)™' tan(wh/2).
Thus, it is easily seen from Corollary 1 that for any IVP (2.1)-(2.2) of the class
K 0 in a Banach space, the numerical solutions obtained by the method (4.1) are
stable provided that for some nonnegative integer m the stepsize /4 satisfies
2mr <wh< (2m+ D=n.

Example 4.2. It is easy to verify that the method

Vuer =V = MBIy V) + B = 7H) 10, 3]

2
(4.2) - %[(1 + B+ 9BV [ (s V)

—(1+ Ry f 2, v)]

with the constants £, y > 0 is of order four, and it is easily seen from Corollary
1 that for any IVP (2.1)-(2.2) of the class K, and any stepsize h > 0, the
numerical solutions obtained by this method are stable.

Example 4.3. Consider the method

Yurt =Vu =+ ) [ (1,4, V1) —af(1,, ¥,)]

h 7 3
(43) _-2—[<a+m) f(tn+l’yn+l)+ (a+1_'0') fl(tn,yn):l
n 3 2
+ E [(a+ g) ‘f"(tn+1 ’ yn+1) - (a+ g) fJ,(tn ’ yn)] )
which is consistent of order at least 5, and order 6 for a = —% . It is easy to

show that this method is A-stable if o > —1. On the other hand, for a > -1
the assumption (3.12) is fulfilled; thus for any IVP (2.1)-(2.2) of the class K¢
and any stepsize 2 > 0 the numerical solutions obtained by the method (4.3)
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are stable and can be bounded by

C, o 1 .2 7 ()
w | < —2 __ Nw, —rh(l +a)F," + =rh (a+—-)F
” n“ 1+r(p(ﬂ}(h)) 0 ( ) 0 2 10 0
(4.4) 1 3 3 @)
—ﬁrh (a+‘5‘)F0 ,
ro<r<l.

Now it can be seen that the method (4.3) is applicable to both nonlinear stiff
IVP’s of the class K , and linear stiff systems.
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