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NONLINEAR STABILITY 
OF MULTISTEP MULTIDERIVATIVE METHODS 

SHOUFU LI AND BAOGEN RUAN 

ABSTRACT. In this paper we examine nonlinear stability of multistep multi- 
derivative methods for initial value problems of a class K(, in a Banach space. 
Stability criteria are established which extend results of R. Vanselow to this 
class of methods. 

1. INTRODUCTION 

Since 1975, theories of nonlinear stability of numerical methods for ordi- 
nary differential equations have been gradually developed. However, in most 
papers the studies are restricted within the limits of finite-dimensional Euclidean 
spaces (cf. [ 1-5]). In 1979, Nevanlinna and Liniger [ 11 ] were among the first 
to discuss the stability of one-leg methods for nonlinear problems in a Banach 
space. In 1983, Vanselow [12] analyzed the stability of linear multistep meth- 
ods for nonlinear problems of the classes K1, K2)*, and K3,u in Banach 
spaces. Recently, Li [8] introduced the classes of nonlinear problems K(,u, A*) 
and K(ji, A*, 3) which unify and extend the classes of problems and the re- 
sults in [12]. In a further development along similar lines, Li [9] investigated 
the nonlinear stability of explicit and diagonally implicit Runge-Kutta methods. 
Furthermore, Li [10] made a modification to the class K(,u, 0, 0) to deal with 
the nonlinear stability of multistep methods with first-order total derivative of 
the right side of the differential equation. In the present paper these studies are 
extended to multistep methods with higher derivatives, and the results of [10] 
and some of [12] will be recovered as special cases. 

2. CLASS OF MODEL PROBLEMS 

Let X denote a real Banach space with the norm 11 11, D an infinite subset 
of X, and f: [0, +oo) x D -, X a given sufficiently smooth mapping. Consider 
the initial value problem (or IVP for short) 

(2.1) y'(t) = (t, y(t)), t > 0, 

(2.2) Y(0) =YO, YO ED. 
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Throughout this paper, the assumption is made that the IVP (2.1 )-(2.2) can be 
solved uniquely. 

For any u, v E D, t > 0, using the mapping f, we define a nonnegative 
function 

p 

(2.3) HUVtjf() = U-V+ L(_)q~ [f(q-1)(t, u)-f(q-l)(t, v)] 
q= 1 

where = ( ... ., p) E R, p is a positive integer, and the functions f(q) 
are defined recursively by 

.f(0)(t, w) = f(t, w), 

f(q )(t, w)- f( + af (t. w) 

In the special case where X is a (complex or real) Hilbert space with the 
inner product (, ) and the corresponding norm Ii (2.3) is equivalent to 

P 

Huvtf(j )={ IIU-Vii 2+ E2)-lf(q-)(t )_ f(- l)(t V)112 
q= 1 

+ 2 L(_ 1)q ~q Re(u - v, /fq- 1)(t' U) _ f~q-1) (t' V)) 

(2.4) q=1 
+2 2 ii 

1<I<ijp 

1/2 

*ReVf )(t, U) - (i-,)(t, V), f('- 1) (tl U) - (i 1)(t IV))) 

For convenience, the H Uv t f (4) will be denoted by H(4) . 

Definition 1. Let qp: IRp 1R+ denote a nonnegative function with the property: 

(2.5) y?(p() = f(py4) Vy E DR+, (4l 1 421 ** P) E R+ 

Here, 1R+ = {x e IDjx > 0}. The class of all IVP's (2.1)-(2.2) with f satisfying 

(I 11 + f(4)]H(O) <-H(4) VF EX+ u, v c-D, t > ; 

(2.6) f (II) for a =(4l, 42, - , 1 42 ' p) E 

if ~q I <4q with q= 1, 2, .. p, 

then H(c)<H(,) Vu,vED, t>O 

is denoted by K(P), or, if no confusion can arise, simply by K9,. 

Proposition 1. If the IVP (2.1)-(2.2) belongs to the class K,, then for any 4 = 

I 1 42 - Xp) c Rp and 6 e [O., ] there holds 

H(4)1< 1+ H(4), u,veD, t>O. 
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Proof. From Definition 1 we find 

H(64)- (I1- )(u -v) 

+ u - V + u(-l)% qtf(q-)(t, u) - f(q- )(t, v)]} 

< ( 1- 5)H(O) + JH(4) < 
6 

+(,)H(4) + J5H(,) = 1 + )H(4) . o 

Proposition 2. If X is a (complex or real) Hilbert space, then condition (2.6) 
implies that 

(- I) 
q 

Re(u - , fq-1 (t, U)_fq- 
1 

(t , v)) 

(2.7) <-o(eq)I1u-vI I1 q-=,2, ... ,pu,veD, t>O; 

I (1), i eEi(t, u) - f"-) (t v) ti-f)(t, ) fj-) 

< 0, 1 < i, j < p, u, v ED, t? 0; 

here, eq = (O, ... , 0, 1, 0, ... , 0), with the qth component equal to I and the 
others zero. In addition, if the further assumption is made that the function q' 
satisfies 

2 L2( 2 
(2.8) ,(7 (':) < 4q (eq) \/4 = (4l1 S 21 7 *- ) E Rp+ 

q=1 

(e.g., =- 0) then condition (2.6) is equivalent to (2.7). 
Proof. First suppose condition (2.6) is satisfied; we prove (2.7). Put x > 0 and 
choose 4 = xeq in (2.6)(I), so that 

[p (eq) + 
2 fy(eq)l I1u - v112 < x 1)(t u) - f(qI)(, )112 

+ (_ )q Re2u - V, f(q-)(t, U) _ f(q 1)(t, V)) . 

Letting x -- +0 we get (2.7)(I). Further, it follows from (2.6)(II) that 

H(xei - ej) < H(xei + e.), i, j = 1, 2, . ,p. 

Hence we have 

-Rex (a - v) + (1)fil(t u) - f'-') (t ) ] 

(i -I) _t 
(1 )i (t, U) - ft ,(t ? V)]) < 0. 

Letting x -* ?oo yields (2.7)(II). 
We now prove (2.6) on the assumption that (2.7) and (2.8) are satisfied. Note 

that (2.7)(I) leads to 

?2(eq)jtu - vjj2 < jjf(q-)(t, u) - f(q-l)(t, V)II2 q = I - 2 .. , 
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and therefore we find 

(2.9)~~ (E (p (e,)) IIU -V112 < E 4411f~q- )(t, U) _ f (q-)(t, V)II 
(2.9) /qYq /j -H qI 

k= q= 1 

V-(4 1 ' 21 * Xp) E RP , U. V E D, t > O. 

A combination of (2.4), (2.7), (2.8), and (2.9) yields (2.6)(I) and (2.6)(II), and 
this completes the proof. o 

Proposition 3. Suppose the IVP (2.1)-(2.2) belongs to the class K,. Then for 
any two solutions y(t) and z(t) of the differential equation (2.1) the following 
is true: 

(2.10) Ijy(t2) - z(t2) < exp((t1 - t2)(P(e,))Hly(t,) - z(t1) l, t2 > t? > 0; 

(2.11)~ Ily(q) (t) - (q) (t)l < ll(q) (tj) - z~q (tl~l 

t2>t >0, q= 1,2,...,p-1, p>2. 
Proof. We only need to note that the functions 

G(t) = exp(t9(e,))|y(t) - Z(t)0j 

and 

Gq (t) = Ily (q) (t - z(q) (t II, q = I1, 2, . .. , p - 1 

are continuous for all t > 0 and have the left-hand derivatives DG(t) and 
D_ Gq(t) for all t > 0; it is then easily seen from (2.6)(I), (II) that DG(t) < 0 
andDGq(t)<0. 0 

Proposition 4. Suppose qi: [O, +oo) --N is a given sufficiently smooth map- 
ping, and A an N x N matrix satisfying 

(2.12) yl(-(-A )q) < 0 q =1,2,...,9p,9 

where yu(.) is the logarithmic matrix norm corresponding to an inner-product 
norm on CN (cf [6]). Then the linear system 

(2.13) f y( (t) = Ay(t) + yV(t), t > ?0 

21Y(O) = Y, yEC e 

belongs to the class K. with 

p 
(2.14) f 4 : ' qy(-(-A )q), 9 14 9 42' 9* .. 9p) ERP+ 

q= 1 
Proof. It is well known that 

j1(I - A)-'1I < (1 - ,u(A))7' if y(A) < 1 
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and 
,p P 

8u fc4qAq) <? 'qJL(Aq) I O 2, p 
iq=1 q=1 

where Aq, q = 1,2, .. , p, are N x N matrices and I is the N x N identity 
matrix. Hence, under the assumption (2.12) we have (2.6) (I) and one easily 
shows (2.6)(II) from (2.4). o 

3. MAIN RESULTS AND THEIR PROOFS 

Consider the multistep multiderivative method for the IVP (2.1)-(2.2) 

k 

(3.1) E i Y+i _ (tn~i Yn+i)] = 
i=o L q=I 

where k, p are positive integers, h > 0 is a stepsize independent of n , Yn+i E 

D are approximations to y(tn+i) , tn+i = (n + i)h, the coefficients ai, t3iq are 
real-valued functions of h (cf. [8] and Examples 4.1 and 4.2 in the present 
paper), and it is assumed that ak > 0 and Eik a = 0 for all h > 0. 

For the method (3.1) and any given h > 0 we define 

(3.2) IO = {O.,1, ..., k - 1}, I1 = {i E Iola : 1O}, I+ = {i E Iolai > }. 

Note that because of ack > 0 and Ei0k a = 0, the set I1 is nonempty. 
Let {yn} and {zn} (yn, Zn E D) be two approximation sequences which 

satisfy (3.1) with different initial conditions. We now introduce some notation: 

Hn (4) = Hyn, zn,tn, f(4 Wn = Yn-Zn ' 

-F l(t -1)1 2 p n~-l =f-)(n, Yn)-q (tn , Zn)' q=1,2...,p 
A = A(h) ZI Jail/Iakl =I + 2 E aiak 

iEII iEI+ 

(=h p) ,2 i = O, , k. 

By (3.1) we have at once 
p 

Wn+k + n+k 
q=1 

(3.3) 

iEII L. 
q=I 1 

Theorem 1. Suppose the IVP (2.1)-(2.2) belongs to the class K. and the set 

N, =h > O max Ifliql < f3kqI q =, 2, **p; 
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is nonempty. Then for all h E N, and r E [ro, 1] the generalized contractivity 
inequalities 

p 
+ ~~l(h) r _ qhq F(q1 [1 + rQ(f4k )II|Wn+kI? < Wn+k + rh n+k 

(3.5) q=1 

p 
' 

ChimeaX Wn+ 

i+ r L( -l) 
q h 3 

q 
F (q- 1I) ? Chmax w111+i flq ~ iEI 

q=1 

n = 0, 2, are satisfied. Here, 

C _ A[1 + roq(f h)] 
Ch I 1?P(fl~h)) - 

(3.6) rO = maxtr,, r2, .., rp 

r maxiE, Ifliql/flkq for fikq 
> q=1,2,...,p. 

q for flkq= 09 
Proof. For h E Ng it is easy to see that there exists r meeting the requirements 
of this theorem and certainly 0 < Ch < 1 . With Definition 1 and Proposition 
1 it is obvious that 

(/h) (h) 1 + rqp(fi~h))~ ((h) 
(3.7) [1 + r(o(/Jk )]IlWn+kIl < Hnlk(r/k ) < Hn+kk 

Note that (3.3) yields 

(3.8) Hn+k( k ) E(iajjak)Hn+i(fli 
iEII 

On the assumption that Ifliql < ro/Jkq, i e I, q = 1, 2, .. ., p, we obtain 

(3.9) H (fi~(h)) < (rI(h)) <1+ r0 Q(fJ(h)) (h)) 
n+i(li ) < Hn+i(rO0 k 1 < I + /3 ,r h)) H+ (r/k ) . 

A combination of (3.7), (3.8), and (3.9) leads to 

(f(h))]I (h)) [1 + rp(/Jk )]wn+kfl < Hn+k(rf/k ) 

+ (>(h) + =~ (p (h a ||k )Hn+i (rflk) 

1+ A~ ) ke ? E A[1 + ro qP(fl h))] (h) 
< k ~~~maxHfl+i(rflk) 

1+ (P(fi~h)) iEIO 

which completes the proof. o 

Corollary 1. Suppose the IVP (2.1)-(2.2) belongs to the class K, and the set 

(3.10) N = {h>O1max I fliqI < flkq9 q = 1, 2, ... , p; maxai < 0} 
iEI1 iEI1 
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is nonempty. Then for all h E N and r E [ro, 1] the inequalities (3.5) are 
satisfied with 

(3.11) C = 1~~~~~~ + ro(q,(/3~h)) 
( 3.1 1 ) ~~~Ch + (P t l h)) 

Proof. The proof is quite easy; we only need to note that in this case we have 

N. cN. and A=1. a 

Corollary 2. If in the method (3.1) all coefficients ay 'iq are independent of h 
and satisfy 

(3.12) Iai < for i EIo, 
{ foriIq 12..p 
I fliiq I < flkq friEI 

then 
(I) for any IVP (2.1)-(2.2) of the class K. and h > 0 the inequalities (3.5) 

are satisfied with Ch given by (3.11), whenever r E [ro, 1]; 
(II) the method is A(7rj(2p))-stable. 

Proof. Result (I) is derived from Corollary 1; for the proof of result (II), note 
first that, as an obvious consequence of Proposition 4, for 0 E [ - 7r/(2p), X + 
7r/(2p)] the linear model problem 

(3.13) / A= Iexp(iO) E C, i= T, 

{Y(0)=Yo, YOeC, 

belongs to the class K(, with 

p 

L 4 =(-1 )%q~Re(Aq); 
q=1 

then apply result (I). o 

Remark 1. Inequalities (3.5) imply 

p 

max Wnk+i + lkqnk+i 
(3.14) q= 1 

p 

< Chnmaix w,+ r(-I)qhq SkF. ,q n O, 12 , . 
q=1 

and 

1? C,2 max w1 +rL ~ hq (-1 
(3.15) IIWnk+jII <Il+ ~(Al(b)) jeiEIwj r(1 hflkqFi~ 

n= , 1, 2, ..., j= , 1, ..., k- 1. 

Inequalities (3.14) and (3.15) characterize the stability of the method (3.1). 
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Remark 2. For the method (3.1) with p = 1, 2, the results in the present paper 
coincide with those in the papers [8] and [10], respectively. 

4. EXAMPLES 

Example 4.1. For problems with oscillatory solutions a class of methods based 
on trigonometric polynomials was developed by Gautschi [7]. One such method 
is the implicit one-step method 

(4.1) Yn+ z-Yn = - tan(wh /2) [f (tn+ I, Y1n+ i) + f (t, X n) )] a) 

where h > 0 is a stepsize independent of n and co > 0 is the known circular 
frequency of the true solution. The method (4.1) is of trigonometric order 1 
and of algebraic order 2. In comparison with (3.1) we get that k = p = 1, 
a = -1, a = 1, ,lo I = -((oh)- 1 tan(wh/2), and 'l = (wh)- 1 tan(wh/2). 
Thus, it is easily seen from Corollary 1 that for any IVP (2.1)-(2.2) of the class 

K( in a Banach space, the numerical solutions obtained by the method (4.1) are 
stable provided that for some nonnegative integer m the stepsize h satisfies 
2mxt < wh < (2m+ 1)Xr. 

Example 4.2. It is easy to verify that the method 

Yn+1 -Yn = h [(3 + yh3)f(tn+l Yn+1) + (3- yh )f(tn, nY)] 

(4.2) h2 2+ /h + (t 

- (1 + f/h2 - yh3)f (t n ) Yn)] 

with the constants ,6, y > 0 is of order four, and it is easily seen from Corollary 
1 that for any IVP (2.1)-(2.2) of the class K, and any stepsize h > 0, the 
numerical solutions obtained by this method are stable. 

Example 4.3. Consider the method 

Yn+1-Yn = h[(l + a)f(tn+i, Yn+1) - af(tn y A)] 

h2 ~73 
(4.3) -2 [(a+ 10)(tn+liYn+1)+ a+ 10, (tn Yn) 

+ - 2 a + - (t n+1 9 Yn+) )-a + - (tn 9 Yn)] 

which is consistent of order at least 5, and order 6 for a = -2 . It is easy to 
show that this method is A-stable if a > - On the other hand, for a> -> 

2 ~~~~~- 2 
the assumption (3.12) is fulfilled; thus for any IVP (2.1)-(2.2) of the class Kf 
and any stepsize h > 0 the numerical solutions obtained by the method (4.3) 
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are stable and can be bounded by 

WC< h Wo - rh(1 + a)FO) + rh2 (a + -' FM1l 
11n1+rq,(f3h)) 

0 2 10/ 0 

(4.4) - I rh 3(a + ) F (2) 

ro<r< 1. 

Now it can be seen that the method (4.3) is applicable to both nonlinear stiff 
IVP's of the class K. and linear stiff systems. 
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